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SUMMARY

Due to the great geometrical �exibility, popularity for unstructured grid methods in �uid dynamics has
been increasing in recent years. In parallel with this interest there is a need for bounded second or
higher order convection schemes which can be implemented easily in the unstructured setting. In the
present work a simple strategy for achieving convective boundedness in the context of a vertex-centered
unstructured �nite volume algorithm is demonstrated. Testing is carried out on an inviscid oblique step
problem using both structured and unstructured grid arrangements. Further testing for numerical di�usion
is done using a distorted grid in a two dimensional channel. The proposed scheme is straightforward
to implement and is found to perform well for the cases considered. The overall algorithm converges
well and the limiter appears to introduce little extra numerical di�usion beyond that inherently present
in the base scheme. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In using second or higher-order convection schemes problems can often arise as a result
of physically unrealistic overshoots or undershoots in the vicinity of sudden changes in the
gradients of the dependent variables. These problems are particularly noticeable for parameters
such as k and ” which cannot be less than zero and species concentrations which must fall
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between zero and one. A commonly used solution is to employ higher order schemes for
components of velocity only and �rst order upwind di�erencing schemes for the obviously
problematic variables. This may have some justi�cation in some cases, however as has been
noted [1], �rst order schemes can introduce a signi�cant amount of additional numerical
di�usion. A better solution is to keep the higher order scheme for all variables and use a
numerical device that in the literature is often called a ‘limiter’ to control the convection
scheme in the vicinity of rapid gradient changes. While a number of e�ective limiters have
been devised in the last twenty years (for example References [1–8] and the references
contained therein), relatively few have been designed speci�cally with unstructured grids
in mind (for example References [3–6]). It is possible to apply structured grid limiters to
unstructured grids [9, 10] but it can be somewhat inconvenient particularly if the procedure
requires interpolation of additional upstream points. In the present work we outline a general
strategy for achieving bounded solutions by making use of principles similar to those suggested
by Gaskell and Lau [2] and apply it to a second order upwind biased scheme in the setting
of a vertex centred unstructured �nite volume algorithm. The main contribution of the present
work is in demonstrating that a very simple approach can be used to produce quite acceptable
monotone solutions for incompressible �ow calculation on unstructured grids.

2. OVER-VIEW OF DISCRETIZATION PROCEDURE FOR NAVIER–STOKES
EQUATIONS

Before focusing on the limiter it is useful to make a brief overview of the underlying numerical
scheme. Full details can be found in the previous work of the authors [11].
The mathematical equations for the dependent variables, u; v; w; h, etc. are all cast into the

form of Equation (1).

@
@xj
(�uj�)=

@
@xj

(
�
@�
@xj

)
+ b(�) (1)

Equation (1) is re-expressed in integral form using the divergence theorem for an arbitrary
control volume shape as in Equation (2).∫∫

Surf
(�uj�nj) ds=

∫∫
Surf

(
�
@�
@xj

nj

)
ds+

∫∫∫
Vol
(b(�)) dv (2)

It should be noted that mathematically Equation (2) is an exact representation of Equation (1)
regardless of the shape or orientation of the control volume with respect to a �xed Cartesian
frame of reference. This fact is very convenient for the unstructured method since it makes it
possible to use exactly the same Cartesian frame of reference for every control volume in the
whole domain. Thus in the present approach we do not need to align the sides of the control
volumes with the axis co-ordinates (as is shown below in Figure 1). Moreover it should be
emphasized that also we do not need to transform Equation (2) to a generalized curvilinear
co-ordinate system since the same Cartesian co-ordinate frame is used for the entire problem.
The computational grid may be constructed of tetrahedrons or hexahedrons in three dimen-

sions and triangles or quadrilaterals in two dimensions. In the present approach, unknowns are
solved at the corners of the polyhedrons (or polygons for two dimensions), which form the
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Figure 1. Control volumes used for numerical integration. (a) 2D mesh; (b) 3D mesh. ‘c’
is the midpoint of the edge I–J , ‘a’ and ‘b’ are face centres of the hexahedron and ‘d’ is

the centre of the hexahedron shown.

building blocks for the mesh. Median–dual control volumes as shown in Figure 1 are used
for numerical discretization of Equation (2).
In Figure 1 the line connecting any two neighbouring points (e.g. I–J ) is generally called an

‘edge’. If in numerical integration, we can assume that the values of any variables interpolated
to the edge midpoint ‘c’ are representative of all the facets of the control volume which have
a corner at ‘c’ (see Figure 1(b)), then the geometry for the entire domain can be summarized
as a set of vectors {S(c)} where there is one vector for each edge. For any given edge I–J
in Figure 1(b), S(c) is simply the vector sum of the facet area vectors S(k) for facets with a
corner at ‘c’. S(k) is normal to the facet and has a magnitude equal to the area of the facet.
In the two-dimensional case (Figure 1(a)), S(k) has a magnitude equal to the length of the
line c–d and unlike the three-dimensional case there are only two vectors which need to be
added together to calculate S(c) for each edge.
Numerical integration over the control volume for each term in Equation (2) is carried out

as explained in the sections below. The continuity and momentum equations are linked in
an iterative procedure utilizing the SIMPLE algorithm [12]. Individual discretized equations
are solved using under-relaxed Jacobi point iterations using the edge-based data structure as
explained in the Appendix of this paper.

3. NUMERICAL TREATMENT OF THE CONVECTION SCHEME

3.1. Base convection scheme

The term on the left in Equation (2) is discretized as given in Equation (3) where
the summation is done over all edges associated with the control volume surrounding
the point ‘I ’. ∫∫

Surf
�uj�nj ds ≈ ∑

NIneighbours
�|C�|Cu|C • S(C) (3)

As can be seen in this equation the discretization method �nally reduces to how we decide
to interpolate the values of ‘�’, ‘�’ and the dot product ‘ujSj’ to the edge midpoint ‘c’.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1007–1024
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The authors have selected linear interpolation for property variables, a second order upwind
biased interpolation for the dependent variable, � and the Rhie and Chow [13] approach for
interpolating the volume �ux term ‘ujSj’. This combination has been found to work quite
well [11] and it allows us to use a co-located grid for pressure and velocity components
without producing an erroneous ‘checker board’ e�ect in the pressure distribution.
In the present article, we will focus on the method for interpolating the dependent variable,

� to the midpoint ‘c’ in Equation (3) since this is where the limiter is applied to the scheme.
For a given edge, if ‘I ’ is the upwind point then �|c is given by Equation (4).

�|C =�|I +� �(IJ )

2
× @�
@X

|I (4)

In this equation, upper-case ‘X ’ denotes the direction I–J and �(IJ ) the distance from ‘I ’ to
‘J ’. The Greek letter � represents the limiter and has values ranging from zero (fully limited
scheme) to one (base scheme) as will be explained below. To calculate the gradient at the
upstream point in Equation (4) we use another numerical approximation to the divergence
theorem as given in Equation (5).

@�
@xi

|I ≈ 1
Vol(I)

( ∑
NIneighbours

1
2
(�|I + �|J )Si|C

)
(5)

The component of the gradient vector in Equation (5) along the direction I–J is given by
Equation (6) where Bj is the ‘j’th component of a unit vector along the direction I–J .

@�
@X

|I = @�@xj |IBj (6)

It should be noted that in Equation (6) and throughout this paper Einstein’s summation con-
vention for Cartesian tensor notation is followed where the repeated subscript (in this case
‘j’) implies a summation from 1 to 3 for three dimensions or from 1 to 2 for two dimensions.
Subscripts that follow a vertical bar or are in parenthesis (whichever is more convenient) are
used to indicate labels that are not tensor subscripts.
If the value of � used in Equation (4) is always set to unity then the scheme may allow

non-physical over-shoots in the vicinity of rapid changes in gradient of the dependent variable.
On the other hand if it is always set to zero then the entire domain will revert to a �rst order
upwind scheme and much �ner grid allocation will be required for an accurate solution. Thus
the goal of the present approach is make good choices for the value of � at di�erent points
in the computational domain so as to not permit overshoots and at the same time minimize
numerical di�usion.

3.2. Strategy to produce bounded solutions

It should be noted that for many problems, higher order upwind biased convection schemes
such as QUICK [14] (for structured grids) and the present unstructured second order scheme
with � set to unity can sometimes produce bounded solutions for the calculated distribution of
the dependent variable, � for most if not all of the domain in spite of the fact that the scheme
itself is unbounded. In general it is found that overshoots and undershoots tend to occur in
the vicinity of rapid changes in gradient of the variable � and sometimes in places where the
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gradient should be zero. This observation suggests that it would be strongly desirable if one
could use the higher order scheme for as much of the domain as possible and then revert to a
bounded �rst order upwind scheme only in regions where the higher order scheme produces
values of � which are unbounded by their neighbours. In fact, as will be shown below it
is quite useful to think of the role of the limiter in terms of achieving this goal. For both
structured and unstructured grids in multiple dimensions, a solution could be described as
bounded if for every point ‘I ’ in the domain Equation (7) is satis�ed.

06
�|I − �(min Ineighbour)

�(max Ineighbour) − �(min Ineighbour)61 (7)

In Equation (7) �(min Ineighbour) is the minimum value of � comparing all immediate neighbours
of the point ‘I ’ (not including �|I itself) and �(max Ineighbour) is the maximum value of � for the
neighbours of point ‘I ’ (again not including �|I). In other words, if �|I does not go outside
of the range of values for � speci�ed by its neighbours then the solution is bounded at the
point ‘I ’.
Noting Equation (7), for convenience we introduce a dimensionless parameter � as de�ned

by Equation (8).

�(I) =
�|I − �(min Ineighbour)

�(max Ineighbour) − �(min Ineighbour) (8)

The most important part of the present strategy is to revert to a bounded �rst order convection
scheme if the conditions suggested by Equation (9) arise.

�(I)¡0 or �(I)¿1⇒ scheme=bounded 1st order (9)

Simply using the second order scheme everywhere else except at grid points where Equa-
tion (9) applies is found to fail since there is not a smooth shift between the second order
and �rst order schemes. The limiter then switches on and o� from iteration to iteration and
convergence is never reached. So the strategy also needs to satisfy Equation (10).

�(I) → 0 or �(I) → 1⇒ scheme→ bounded 1st order (10)

Finally to make the strategy complete Equation (11) gives the range of � for which the second
order scheme should be employed.

�6�(I)61− �⇒ scheme=unbounded 2nd order (11)

In Equation (11) the parameter � needs to be chosen somewhere in the range from 0 to 0.5
and if � approaches � from below (i.e. if 0¡�¡� and �→ �) or 1 − � from above (i.e. if
1 − �¡�¡1 and �→ 1 − �) then the scheme should approach the unbounded second order
base scheme to achieve good convergence.

3.3. Bounded �rst order scheme for case where limiter is fully switched on

Having examined the overall strategy we need to consider the details of the �rst order scheme
to be applied in the case where the limiter is fully switched on. If the conditions suggested
by Equation (9) and in the limit of Equation (10) arise then it is essential that the chosen
�rst order scheme must truly be bounded.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1007–1024
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Figure 2. Example two-dimensional control volume for grid point ‘I ’. Arrows indicate direction
of �ow for each edge in the example.

Without loss of generality, it is instructive to consider a two dimensional case such as that
shown in Figure 2.
In this �gure the points ‘D’, ‘E’ and ‘F’ are upstream of the point ‘I ’ while the points ‘G’,

‘Q’ and ‘M’ are downstream. The points given by lower case letters ‘d’, ‘e’, ‘f’, ‘g’, ‘q’, and
‘m’ are the midpoints of the edges ‘I–D’, ‘I–E’, ‘I–F’, ‘I–G’, ‘I–Q’ and ‘I–M’, respectively.
If in Equation (4) we set � to zero for the grid point ‘I ’ then for the points ‘g’, ‘q’ and

‘m’ in Figure 2 the following relations apply:

�|g =�|I
�|q =�|I
�|m =�|I

(12)

In a steady, pure convection problem the resulting equation for the variable �|I will be given
by Equation (13):

F(d)�|d + F(e)�|e + F(f )�|f =F(g)�|I + F(q)�|I + F(m)�|I (13)

where for example F(d) is the magnitude of the mass �ux for the edge midpoint ‘d’.
Now in order to satisfy continuity Equation (14) applies.

F(d) + F(e) + F(f ) =F(g) + F(q) + F(m) =F(tot) (14)

Hence Equation (13) can be rewritten in the form given by Equation (15).

�|I = F(d)
F(tot)

�|d + F(e)
F(tot)

�|e + F(f )
F(tot)

�|f (15)

In other words �|I is a positively weighted average of �|d ; �|e and �|f and therefore we can
say that �|I will be bounded by �|d ; �|e and �|f . Thus the �rst order part of the present
scheme will be bounded if the values interpolated to the midpoints of the in�owing edges
(‘d’, ‘e’ and ‘f’ in Figure 2) are also bounded by the neighbouring points. There are a
number of possible ways to ensure that this requirement is met. Perhaps the simplest is to
set �|d ; �|e and �|f equal to �|D; �|E and �|F, respectively (pure �rst order upwinding).
In other words set � to zero in Equation (4) if either of the grid points ‘I ’ or ‘J ’ require
a bounded �rst order scheme. However in the context of the present strategy, this choice
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is found to be a somewhat di�usive if the overall scheme is to transfer smoothly from the
second to the �rst order convection scheme. A better approach is to follow the reasoning of
Gaskell and Lau [2] and always insist on interpolative boundedness for neighbouring points.
By interpolative boundedness we mean for example �|d must lie between �|D and �|I as
given by Equation (16).

06
�|d − �|D
�|I − �|D¡1 (16)

It is found that the requirement given by Equation (16) does not appear to introduce notice-
able extra numerical di�usion to the second order scheme and as such it can be introduced
everywhere in the domain and not just in regions where the �rst order scheme is active.
Provided the extreme case where �|d =�|e =�|f =�|I does not occur then if Equation (16)
is enforced, an unbounded value of �|I will iteratively progress towards being bounded by
the values at the upstream points when the limiter is fully switched on (� set to zero).
A third alternative which deserves mentioning since it is used in the unstructured grid con-

vection scheme of Barth and Jesperson [3], requires that interpolated values to edge midpoints
are always bounded by the maximum and minimum of all of the neighbours of the upstream
grid point including the point itself. In terms of the interpolated point ‘d’ in Figure 2 this
requirement is given by Equation (17).

06
�|d −MIN(�(min Dneighbour); �|D)

MAX(�(max Dneighbour); �|D)−MIN(�(min Dneighbour); �|D)61 (17)

Equation (17) is less restrictive than Equation (16) and at extremities where the limiter is fully
switched on it produces a �rst order scheme that is bounded by the maximum and minimum
of a group of surrounding points consisting of the upstream neighbouring points and their
neighbours. The de�nition of boundedness in this case would be slightly relaxed from that
given by Equation (7) but probably adequate for achieving physically realistic results since
the gradient used in the interpolation of �|d for example also makes use of these additional
upstream neighbouring points (cf. Equation (5)). Nevertheless, for the present work we have
selected the slightly more restrictive approach given by Equation (7) and have insisted on the
requirements of Equation (16) everywhere in the domain.

3.4. Combined scheme with proposed limiter

Returning to the general edge ‘I–J ’ shown in Figure 1, the limiter is applied to the scheme
for the case where ‘I ’ is upstream of ‘J ’ as follows. Firstly in Equation (4), � is rewritten
as given in Equation (18) where �(I) is responsible for switching on the �rst order scheme
when required and �(IJ ) is responsible for ensuring interpolative boundedness for the edge.

�=�(I)�(IJ ) (18)

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1007–1024
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Figure 3. Present limiter (Equation (19)) plotted against the dimensionless parameter, � (Equation (8)).

Equation (19) de�nes �(I) in terms of the requirements given by Equations (9)–(11).

�(I) = 0 if �(I)¿1 or �(I)60

�(I) = 1 if �6�(I)61− �

�(I) =
�(I)
�

if 0¡�(I)¡�

�(I) =
1− �(I)
�

if 1− �¡�(I)¡1
�(I) = 1 if �(max Ineighbour) − �(min Ineighbour)610−20

(19)

The last requirement in Equation (19) avoids division by zero for de�ning �(I) in Equation (8).
For the present work a value of 0.2 is selected for � and the sensitivity to this choice
is discussed below. Equation (19) is illustrated graphically in Figure 3 where it is clear
that the limiter is a piecewise continuous function of � which satis�es the requirements of
Equations (9)–(11).
To ensure interpolative boundedness (cf. Equation (16)), �(IJ ) is de�ned as follows:

�=MIN
(
1;

2(�|J − �|I)
�(I)@�=@X |I�(IJ )

)

�(IJ ) =MAX(0;�) (20)

3.5. Practical implementation of the scheme
Ideally, implicit procedures should be used where possible. However it is found much more
convenient to explicitly evaluate Equation (5) and the second term on the right of
Equation (4). Equations (18)–(20) are also evaluated explicitly. For the present work, the
upwind part in Equation (4) is the only term in the convection scheme treated implicitly
(�rst term on right hand side of Equation (4)). This kind of procedure (sometimes called a
‘deferred correction approach’) is straightforward to implement but it may allow overshoots
and undershoots to occur prior to reaching the fully converged state. However once full con-
vergence is achieved there should be no overshoots or undershoots greater than the computer
rounding error.
On another related practical point, prior to convergence, the continuity equation (cf.

Equation (14)) may not be satis�ed exactly so it is better to subtract the continuity equation
multiplied by �|I from Equation (3) so that positively weighted averaging can always apply
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to the implicit part of the scheme (cf. Equation (15)). Thus Equation (3) is rewritten as given
in Equation (21) for the steady-state case.∫∫

Surf
�uj�nj ds ≈ ∑

NIneighbours
�|C(�|C − �|I)u|C • S(C) (21)

Also, it should be noted here that the deferred correction procedure does not in and of itself
produce a bounded scheme due to the presence of the non-zero explicit source term.

4. NUMERICAL TREATMENT OF THE DIFFUSION TERMS

Although we have not mentioned the presence of the di�usion terms from the Navier–Stokes
equations in any of the above discussion in reality the di�usion terms tend to reduce the
need for a limiter. In terms of the dimensionless parameter �(I) given by Equation (8), adding
molecular di�usion will generally push �(I) towards the centre of the bounded region given
by Equation (7) and hence the di�usion terms will tend to switch o� the limiter if it is not
needed. Thus the present approach of aiming to only use the �rst order convection scheme
when it is really necessary is well suited to convection=di�usion problems. The discretization
for the di�usion terms is given in Equation (22) and the approximation for the gradient at
the midpoint ‘c’ is given in Equation (23).∫∫

Surf

(
�
@�
@xj

nj

)
ds ≈ ∑

NIneighbours
�|C @�@xj |CSj|C (22)

@�
@xi

|C ≈ �|J − �|I
�(IJ )

Bi +
1
2

(
@�
@xi

|I + @�@xi |J
)

−1
2

(
@�
@xj

|I + @�
@xj

|J
)
BjBi (23)

The gradients on the right hand side of Equation (23) are calculated in the same manner as
Equation (5) and again it should be noted that lower case ‘i’ and ‘j’ are tensor subscripts so
the repeated ‘j’ is summed from 1 to 3 for three dimensions.

5. TESTING OF THE SCHEME

5.1. Oblique �ow test

The �rst test chosen for the scheme is the standard oblique inviscid �ow test [1, 2, 8]. The
computational domain and boundary conditions are de�ned in Figure 4. For the present study
we consider the case where � is 35◦. Figure 5 shows the computational grids considered.
Figure 5(a) shows a standard mesh with 23× 23 grid points in each direction. Figure 5(b)

shows an unstructured mesh constructed from triangles (796 points), which has been distorted
deliberately in order to provide a good test for the unstructured scheme. Both grids are stored
in the same unstructured format.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1007–1024
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Figure 5. Computational grids used for oblique �ow test. The dotted line shows the location of
the step for the exact solution. (a) Quadrilateral mesh; (b) triangular mesh.

Figure 6 shows the performance of the present convection scheme with and without the
limiter. Because the molecular viscosity is set to zero any departure from the step pro�le
labeled ‘exact’ is due to the numerical discretization and the convection scheme. Predicted
values of � less than zero or greater than unity represent undershoots and overshoots, respec-
tively. For reference purposes the grid spacing near the x=0:5 centreline also is shown in
Figure 6. As can be seen in Figure 6 the present limiter does not allow overshoots for both the
quadrilateral and triangle mesh cases. Also the proposed approach is much less di�usive than
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Figure 7. The e�ect of the choice of � on convergence (the vertical axis shows the sum of the absolute
value of the � residual for the entire domain). (a) Quadrilateral mesh; (b) triangular mesh.

a �rst order upwind scheme. Not only for the pro�les shown but for the entire domain the
maximum overshoot was zero (i.e. less than 1:0E−8 and thus not detectable with the present
single precision calculation) and the maximum undershoot was of the order −1:0E − 12 in
both the triangle and quadrilateral mesh cases.

5.2. The choice of a value for the limiter switching constant

Concerning the choice of � in Equation (19) two factors should be considered. The �rst
relates to convergence. If the value of � is too small the �nal level of convergence is much
poorer. This is illustrated in Figure 7 which shows the sum of the residuals (see appendix)
against the number of iterations for both the quadrilateral case Figure 6(a) and the triangle
mesh case Figure 6(b). For the cases considered it appears that a value of 0.05 is too small
while a value of 0.2 produces very good convergence. We might expect this since the limiter
will tend to switch on and o� more abruptly as � approaches zero.
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Figure 8. The e�ect of the choice of � on numerical di�usion (x=0:5).
(a) Quadrilateral mesh; (b) triangular mesh.

The other factor that needs consideration in the choice of � is its e�ect on numerical
di�usion. We may expect that a smaller value of � will be less di�usive than a larger value.
This is quite reasonable since a larger � implies that the range of values of � for which the
second-order scheme only is used (i.e. �=1) has diminished (cf. Figure 3). Figure 8 shows
the e�ect of the choice of � on the oblique �ow case. The scheme becomes more di�usive
as � is increased to 0.5.
The curves for �=0:2 and 0.05 are very similar in both cases shown in Figure 8. However,

elsewhere in the domain setting �=0:05 allowed an overshoot of around 2.0 per cent due to
the poorer convergence and the explicit treatment. Thus a value of 0.2 is recommended for
the present base scheme.

5.3. Comparison with Barth and Jesperson’s limiter

It is useful to compare the present limiter with that of Barth and Jesperson [3] since their
limiter has been reported to work well for �ow calculation using unstructured grids [3].
Figure 9 compares results for the oblique test case using the present limiter and that of Barth
and Jesperson applied to the present base scheme.
Quite clearly the performance of both limiters when applied to this problem is very good

and quite similar. The �nal level of convergence achieved and rate of convergence for all four
cases shown in Figure 9 was also quite similar. This can be seen in Figure 7(a) and 7(b)
comparing the lines for �=0:2 with the curves for Barth’s limiter. The grid convergence
rate is also found very similar to that resulting from the use Barth and Jesperson’s limiter.
An example is shown in Figure 10 using progressively �ner grid spacing on the oblique
step problem. These results indicate that the present approach is a comparable alternative for
producing bounded results at least for incompressible �ow situations.
The wiggles in the contours apparent in Figure 9(b) and 9(d) may be ascribed to the

irregular triangular mesh shown in Figure 5(b).
In comparison to the approach of extending one dimensional limiters to unstructured grids

by interpolating extra points on the upstream side of each edge, both the present limiter
and Barth and Jesperson’s scheme are signi�cantly easier to implement in a general unstruc-
tured situation. This is because no special reference needs to be made to the shape of the
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Figure 9. Comparison of results using present scheme with results using Barth and Jesper-
son’s limiter [3] (� distribution). (a) Quadrilateral—Present limiter; (b) Triangle—Present limiter;

(c) Quadrilateral—Barth and Jesperson’s limiter (d) Triangle—Barth and Jesperson’s limiter.
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Figure 10. Grid convergence.

original building blocks for the computational mesh. Moreover, as has been demonstrated
in Figure 9(b) and 9(d) that quite irregular meshes still yield monotone results using these
limiters.
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Computationally, the present approach requires one less loop over the edges than what is
necessary for Barth and Jesperson’s limiter and thus it is slightly less expensive to evaluate.

5.4. Application of the limiter to a central di�erencing convection scheme

A more rigorous test for the limiter is to apply it to a central di�erencing base convection
scheme. In such a case Equation (24) is used instead of Equation (4) to obtain � at the edge
midpoint.

�|C =�|I +�1
2(�|J − �|I) (24)

Figure 11 shows the results of this test when applied to the oblique step problem in Figure 4.
As can be seen in Figure 11(a) and 11(d), without the limiter, the central di�erencing scheme
fails to give physically realistic results. The new limiter however yields quite acceptable
monotone results for the whole domain for both triangle and quadrilateral meshes as can be
seen in Figures 11(b) and 11(e). Also the limited central di�erence scheme is signi�cantly
less di�usive than the pure �rst order upwinding as can be seen by comparing Figures 11(b)
and 11(e) with Figures 11(c) and 11(f). It should be noted that to obtain good convergence
with the limiter applied to the central di�erence scheme, it was found necessary to raise
the value of � to 0.3. Comparing Figure 11(b) with Figure 9(a) it appears that the limiter
applied to the central di�erencing scheme is slightly more di�usive than the scheme given by

(a) (b) (c)

(d) (e) (f)

Figure 11. E�ect of limiter applied to central di�erencing scheme. (� distribution). Quadrilateral:
(a) No limiter; (b) Present limiter � = 0:3; (c) First order upwind. Triangle: (d) No limiter; (e) Present

limiter � = 0:3; (f) First order upwind.
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Figure 12. Fully developed 2D duct �ow test case (u velocity contours). (a) Computational grid;
(b) With limiter; (c) No limiter; (d) First order upwind.

Equation (4). This may be attributable to the higher value for �. It also should be noted that
for the triangle mesh case with central di�erencing as the base scheme, the present limiter
converged signi�cantly better than Barth and Jesperson’s limiter applied to central di�erencing
in the same case.

5.5. Fully developed �ow in 2D channel

A further simple test for numerical di�usion is fully developed �ow in a two dimensional
channel having a mesh not aligned with the �ow direction. Figure 12(a) shows the compu-
tational mesh for this test. A fully developed pro�le is speci�ed at x=H = − 1:5 and zero
normal gradients are used for velocity components at x=H =1:5. Reynolds number is set at
400 based on the channel height H and mean velocity.
By examining the results calculated without the limiter shown in Figure 12(c) it is clear that

the limiter is not required for the present test case. Nevertheless, comparison of Figure 12(b)
with 12(c) demonstrates that the present limiter does not introduce noticeably extra numerical
di�usion when applied in situations where it is not essential. This is in contrast to �rst order
upwinding (Figure 12(d)) which, while it guarantees a bounded solution, has the downside of
severe numerical di�usion when the grid lines are not well aligned with the �ow direction.
It should also be noted here that the Peclet number for the control volumes in the centre

of the grid (x=H =0; y=H =0) in Figure 12 is approximately 15. Thus Figure 12 further
demonstrates that the present approach has an advantage over advection schemes which use
the Peclet number as the criterion for introducing �rst order upwinding.

6. CONCLUSIONS

A simple and e�ective strategy has been presented to produce bounded solutions on unstruc-
tured grids and yet allow the use of a second order convection scheme for the majority of the
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calculation domain. The proposed limiter was applied to a second order upwind-biased base
scheme in the context of a vertex-centred unstructured �ow solver and found to perform well
for grids based on triangles and quadrilaterals.
The procedure itself contains an adjustable parameter, �, introduced in Equation (11) to

control how gently the limiter switches on or o�. A value of 0.05 for � was found to result
in poor convergence and overshoots for the oblique step �ow problem. On the other hand
setting � to 0.5 produced a signi�cant amount of numerical di�usion. It appears that a value
of around 0.2 for the limiter switching constant � is a good choice in terms of both reducing
the size of the residuals whilst maintaining good resolution for the overall scheme.
For the incompressible �ow situations considered, the performance and results were similar

to those obtained using Barth and Jesperson’s limiter [3]. Like Barth’s limiter the present
approach is completely general and is much easier to implement for three-dimensional un-
structured grids than techniques which require the interpolation of additional nodes upstream
of each edge to evaluate the limiter. The main advantage of the present approach over the
alternatives for unstructured grids lies in its simplicity, both conceptually and in ease of
implementation for any base convection scheme.
Finally, for all the cases considered the combination of the second-order scheme with the

limiter appears to be a much better option than simply employing �rst order upwind biased
schemes to preserve monotonicity.

NOMENCLATURE

b(�) source term
Bi ‘i’th component unit vector in directions I–J in Figure 1
c midpoint of line I–J
F absolute value of mass �ux
H channel height
Si ‘i’th component of the vector S(C)
S(C) vector representing the combined geometry of all facets of the control volume

connected to point ‘c’
S(K) vector representing the area and orientation of a single facet on the control volume

surface
xi Cartesian co-ordinate
X locally rotated Cartesian co-ordinate aligned with edge direction
x Cartesian co-ordinate (= x1)
y Cartesian co-ordinate (= x2)
� dependent variable
� di�usion coe�cient
� density
�(IJ ) distance from point ‘I ’ to point ‘J ’

APPENDIX A: UNSTRUCTURED GRID MATRIX SOLVER

It is useful to brie�y describe the point Jacobi solver used in the present context as it illustrates
the nature and convenience of the edge-based data structure for unstructured grids. It also
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Figure A1. Algorithm for matrix solver using edge-based data structure.

illustrates how the coe�cients for the discretized equations are stored in the computer program,
which is useful information for unstructured code development and ultimately for application
of the present limiter.
Equation (A1) is the discretized equation for the grid point ‘I ’.

a(p)|I�|I =
∑

NIneighbours
(a(n)|n�|n) + b|I (A1)

The dependent variable, �, the diagonal coe�cient, a(p), and the source term, b, are stored in
one dimensional arrays having lengths equal to the total number of grid points. The coe�cients
for the neighbouring points, a(n) are stored on the edge-based structure where there are two
coe�cients for each edge in the domain. This approach is e�cient as there is no limit to the
number of neighbours a point can have and there is no need to store any zero coe�cients for
the sparse matrix.
The discretized equations are solved iteratively using an under-relaxed Jacobi point solver

as shown in Figure A1. The �rst and third loops in this �gure are over all grid points in the
domain and the second loop is over all edges in the domain. In the present study the procedure
given by Figure A1 is repeated four times prior to updating the coe�cients, a(p); a(n) and b
(i.e. four times per iteration). The under-relaxation factor, � is set to 0.6 for � in the oblique
step case, 0.5 for velocity and 0.6 for the pressure correction equation.
To vectorize the procedure shown in Figure A1 the only modi�cation required is that the

loop over the edges be divided up into a nested loop over groups of edges which do not have
ends at common grid points. This stops the parallel machine trying to write to the same point
at the same time.
Equation (A2) is used in calculating the residual sum for Figure 7.

Rsum=
Npoints∑
I=1

|�|I − �∗|I | (A2)

In this equation �|I has not yet been updated by the third loop shown in Figure A1.
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